Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia
نویسندگان
چکیده
Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expression analysis to identify Gβ and Gγ subunit gene transcripts in the mouse main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Our reverse transcriptase PCR (RT-PCR) and realtime qPCR analyses of all known Gβ (β1,2,3,4,5) and Gγ (γ1,2,2t,3,4,5,7,8,10,11,12,13) subunits indicate presence of multiple Gβ and Gγ subunit gene transcripts in the MOE and the VNO at various expression levels. These results are supported by our RNA in situ hybridization (RISH) experiments, which reveal the expression patterns of two Gβ subunits and four Gγ subunits in the MOE as well as one Gβ and four Gγ subunits in the VNO. Using double-probe fluorescence RISH and line intensity scan analysis of the RISH signals of two dominant Gβγ subunits, we show that Gγ13 is expressed in mature olfactory sensory neurons (OSNs), while Gβ1 is present in both mature and immature OSNs. Interestingly, we also found Gβ1 to be the dominant Gβ subunit in the VNO and present throughout the sensory epithelium. In contrast, we found diverse expression of Gγ subunit gene transcripts with Gγ2, Gγ3, and Gγ13 in the Gαi2-expressing neuronal population, while Gγ8 is expressed in both layers. Further, we determined the expression of these Gβγ gene transcripts in three post-natal developmental stages (p0, 7, and 14) and found their cell-type specific expression remains largely unchanged, except the transient expression of Gγ2 in a single basal layer of cells in the MOE during P7 and P14. Taken together, our comprehensive expression analyses reveal cell-type specific gene expression of multiple Gβ and Gγ in sensory neurons of the olfactory system.
منابع مشابه
Silencing of Odorant Receptor Genes by G Protein βγ Signaling Ensures the Expression of One Odorant Receptor per Olfactory Sensory Neuron
Olfactory sensory neurons express just one out of a possible ∼ 1,000 odorant receptor genes, reflecting an exquisite mode of gene regulation. In one model, once an odorant receptor is chosen for expression, other receptor genes are suppressed by a negative feedback mechanism, ensuring a stable functional identity of the sensory neuron for the lifetime of the cell. The signal transduction mechan...
متن کاملThe Study on Expression of Mous Oocyte and Preimplantation Embryc Mct1 and Mct3 Genes in Vivo and in Vitro
Purpose: The aim of this study was to assay the profile of MCT1 & MCD in mouse unfertilized & fertilized oocytes and preimplantation embryos In vivo and In vitro. Materials and Methods: The presence of mRNAs encoding MCT1 & MCD3 were determined On unfertilized and fertilized oocytes, 2-cell, morulae, blastocyst and cultured embryos in plus glucose KSOM, minus glucose KSOM and pulse glucose KSO...
متن کاملHeterotrimeric G protein subunit Gγ13 is critical to olfaction.
The activation of G-protein-coupled olfactory receptors on the olfactory sensory neurons (OSNs) triggers a signaling cascade, which is mediated by a heterotrimeric G-protein consisting of α, β, and γ subunits. Although its α subunit, Gαolf, has been identified and well characterized, the identities of its β and γ subunits and their function in olfactory signal transduction, however, have not be...
متن کاملConstruction and Expression of a Fused Gene for B Subunit of the Heat-Labile and a Truncated Form of the Heat-Stable Enterotoxins in Escherichia coli
Elaboration of different toxins by enterotoxigenic E. coli has been considered as one of the main virulence factors contributing to the manifestation of disease caused by these microorganisms. Various strategies have been employed to raise antibodies against these toxins as a line of defense. In this study, the 3’ terminus of the gene that codes for the binding subunit of the heat-labile entero...
متن کاملV-ATPase expression in the mouse olfactory epithelium.
The vacuolar proton-pumping ATPase (V-ATPase) is responsible for the acidification of intracellular organelles and for the pH regulation of extracellular compartments. Because of the potential role of the latter process in olfaction, we examined the expression of V-ATPase in mouse olfactory epithelial (OE) cells. We report that V-ATPase is present in this epithelium, where we detected subunits ...
متن کامل